Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell Host Microbe ; 30(3): 373-387.e7, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1767977

RESUMEN

SARS-CoV-2 lineages have diverged into highly prevalent variants termed "variants of concern" (VOCs). Here, we characterized emerging SARS-CoV-2 spike polymorphisms in vitro and in vivo to understand their impact on transmissibility and virus pathogenicity and fitness. We demonstrate that the substitution S:655Y, represented in the gamma and omicron VOCs, enhances viral replication and spike protein cleavage. The S:655Y substitution was transmitted more efficiently than its ancestor S:655H in the hamster infection model and was able to outcompete S:655H in the hamster model and in a human primary airway system. Finally, we analyzed a set of emerging SARS-CoV-2 variants to investigate how different sets of mutations may impact spike processing. All VOCs tested exhibited increased spike cleavage and fusogenic capacity. Taken together, our study demonstrates that the spike mutations present in VOCs that become epidemiologically prevalent in humans are linked to an increase in spike processing and virus transmission.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Mutación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
2.
PLoS Pathog ; 18(1): e1010161, 2022 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1703195

RESUMEN

The global response to Coronavirus Disease 2019 (COVID-19) is now facing new challenges such as vaccine inequity and the emergence of SARS-CoV-2 variants of concern (VOCs). Preclinical models of disease, in particular animal models, are essential to investigate VOC pathogenesis, vaccine correlates of protection and postexposure therapies. Here, we provide an update from the World Health Organization (WHO) COVID-19 modeling expert group (WHO-COM) assembled by WHO, regarding advances in preclinical models. In particular, we discuss how animal model research is playing a key role to evaluate VOC virulence, transmission and immune escape, and how animal models are being refined to recapitulate COVID-19 demographic variables such as comorbidities and age.


Asunto(s)
COVID-19/etiología , Modelos Animales de Enfermedad , SARS-CoV-2 , Factores de Edad , Animales , COVID-19/prevención & control , COVID-19/terapia , Vacunas contra la COVID-19/efectos adversos , Vacunas contra la COVID-19/inmunología , Comorbilidad , Humanos , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad
3.
Front Cell Dev Biol ; 10: 768356, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1702459

RESUMEN

Viruses package host RNAs in their virions which are associated with a range of functions in the viral life cycle. Previous transcriptomic profiling of host RNA packaging mostly focused on retroviruses. Which host RNAs are packaged in other viruses at the transcriptome level has not been thoroughly examined. Here we perform proof-of-concept studies using both small RNA and large RNA sequencing of six different SARS-CoV-2 viral isolates grown on VeroE6 cells to profile host RNAs present in cell free viral preparations and to explore SARS-CoV-2 genomic RNA modifications. We find selective enrichment of specific host transfer RNAs (tRNAs), tRNA fragments and signal recognition particle (SRP) RNA in SARS-CoV-2 viral preparations. Different viral preparations contain the same set of host RNAs, suggesting a common mechanism of packaging. We estimate that a single SARS-CoV-2 particle likely contains up to one SRP RNA and four tRNA molecules. We identify tRNA modification differences between the tRNAs present in viral preparations and those in the uninfected VeroE6 host cells. Furthermore, we find uncharacterized candidate modifications in the SARS-CoV-2 genomic RNA. Our results reveal an under-studied aspect of viral-host interactions that may be explored for viral therapeutics.

4.
Cell Rep ; 38(11): 110508, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1700144

RESUMEN

Concerns that infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of coronavirus disease 2019 (COVID-19), may cause new-onset diabetes persist in an evolving research landscape, and precise risk assessment is hampered by, at times, conflicting evidence. Here, leveraging comprehensive single-cell analyses of in vitro SARS-CoV-2-infected human pancreatic islets, we demonstrate that productive infection is strictly dependent on the SARS-CoV-2 entry receptor ACE2 and targets practically all pancreatic cell types. Importantly, the infection remains highly circumscribed and largely non-cytopathic and, despite a high viral burden in infected subsets, promotes only modest cellular perturbations and inflammatory responses. Similar experimental outcomes are also observed after islet infection with endemic coronaviruses. Thus, the limits of pancreatic SARS-CoV-2 infection, even under in vitro conditions of enhanced virus exposure, challenge the proposition that in vivo targeting of ß cells by SARS-CoV-2 precipitates new-onset diabetes. Whether restricted pancreatic damage and immunological alterations accrued by COVID-19 increase cumulative diabetes risk, however, remains to be evaluated.


Asunto(s)
COVID-19 , Diabetes Mellitus , Células Secretoras de Insulina , Humanos , Páncreas , SARS-CoV-2
5.
J Virol ; 96(2): e0106321, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: covidwho-1476388

RESUMEN

COVID-19 affects multiple organs. Clinical data from the Mount Sinai Health System show that substantial numbers of COVID-19 patients without prior heart disease develop cardiac dysfunction. How COVID-19 patients develop cardiac disease is not known. We integrated cell biological and physiological analyses of human cardiomyocytes differentiated from human induced pluripotent stem cells (hiPSCs) infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the presence of interleukins (ILs) with clinical findings related to laboratory values in COVID-19 patients to identify plausible mechanisms of cardiac disease in COVID-19 patients. We infected hiPSC-derived cardiomyocytes from healthy human subjects with SARS-CoV-2 in the absence and presence of IL-6 and IL-1ß. Infection resulted in increased numbers of multinucleated cells. Interleukin treatment and infection resulted in disorganization of myofibrils, extracellular release of troponin I, and reduced and erratic beating. Infection resulted in decreased expression of mRNA encoding key proteins of the cardiomyocyte contractile apparatus. Although interleukins did not increase the extent of infection, they increased the contractile dysfunction associated with viral infection of cardiomyocytes, resulting in cessation of beating. Clinical data from hospitalized patients from the Mount Sinai Health System show that a significant portion of COVID-19 patients without history of heart disease have elevated troponin and interleukin levels. A substantial subset of these patients showed reduced left ventricular function by echocardiography. Our laboratory observations, combined with the clinical data, indicate that direct effects on cardiomyocytes by interleukins and SARS-CoV-2 infection might underlie heart disease in COVID-19 patients. IMPORTANCE SARS-CoV-2 infects multiple organs, including the heart. Analyses of hospitalized patients show that a substantial number without prior indication of heart disease or comorbidities show significant injury to heart tissue, assessed by increased levels of troponin in blood. We studied the cell biological and physiological effects of virus infection of healthy human iPSC-derived cardiomyocytes in culture. Virus infection with interleukins disorganizes myofibrils, increases cell size and the numbers of multinucleated cells, and suppresses the expression of proteins of the contractile apparatus. Viral infection of cardiomyocytes in culture triggers release of troponin similar to elevation in levels of COVID-19 patients with heart disease. Viral infection in the presence of interleukins slows down and desynchronizes the beating of cardiomyocytes in culture. The cell-level physiological changes are similar to decreases in left ventricular ejection seen in imaging of patients' hearts. These observations suggest that direct injury to heart tissue by virus can be one underlying cause of heart disease in COVID-19.


Asunto(s)
COVID-19/inmunología , Células Madre Pluripotentes Inducidas , Interleucina-10/inmunología , Interleucina-1beta/inmunología , Interleucina-6/inmunología , Miocitos Cardíacos , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas/inmunología , Células Madre Pluripotentes Inducidas/patología , Células Madre Pluripotentes Inducidas/virología , Miocitos Cardíacos/inmunología , Miocitos Cardíacos/patología , Miocitos Cardíacos/virología
6.
Cell Rep Med ; 2(8): 100369, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: covidwho-1322391

RESUMEN

There is an urgent need to identify which COVID-19 patients will develop life-threatening illness so that medical resources can be optimally allocated and rapid treatment can be administered early in the disease course, when clinical management is most effective. To aid in the prognostic classification of disease severity, we perform untargeted metabolomics on plasma from 339 patients, with samples collected at six longitudinal time points. Using the temporal metabolic profiles and machine learning, we build a predictive model of disease severity. We discover that a panel of metabolites measured at the time of study entry successfully determines disease severity. Through analysis of longitudinal samples, we confirm that most of these markers are directly related to disease progression and that their levels return to baseline upon disease recovery. Finally, we validate that these metabolites are also altered in a hamster model of COVID-19.


Asunto(s)
COVID-19/metabolismo , Plasma/metabolismo , SARS-CoV-2/metabolismo , Adulto , Biomarcadores/sangre , Femenino , Humanos , Estudios Longitudinales , Aprendizaje Automático , Masculino , Metaboloma , Metabolómica/métodos , Persona de Mediana Edad , Gravedad del Paciente , Plasma/química , Pronóstico , Índice de Severidad de la Enfermedad
7.
Hum Pathol ; 114: 110-119, 2021 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1213257

RESUMEN

Coronavirus disease 2019 (COVID-19) is an ongoing pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although viral infection is known to trigger inflammatory processes contributing to tissue injury and organ failure, it is unclear whether direct viral damage is needed to sustain cellular injury. An understanding of pathogenic mechanisms has been handicapped by the absence of optimized methods to visualize the presence and distribution of SARS-CoV-2 in damaged tissues. We first developed a positive control cell line (Vero E6) to validate SARS-CoV-2 detection assays. We then evaluated multiple organs (lungs, kidneys, heart, liver, brain, intestines, lymph nodes, and spleen) from fourteen COVID-19 autopsy cases using immunohistochemistry (IHC) for the spike and the nucleoprotein proteins, and RNA in situ hybridization (RNA ISH) for the spike protein mRNA. Tissue detection assays were compared with quantitative polymerase chain reaction (qPCR)-based detection. SARS-CoV-2 was histologically detected in the Vero E6 positive cell line control, 1 of 14 (7%) lungs, and none (0%) of the other 59 organs. There was perfect concordance between the IHC and RNA ISH results. qPCR confirmed high viral load in the SARS-CoV-2 ISH-positive lung tissue, and absent or low viral load in all ISH-negative tissues. In patients who die of COVID-19-related organ failure, SARS-CoV-2 is largely not detectable using tissue-based assays. Even in lungs showing widespread injury, SARS-CoV-2 viral RNA or proteins were detected in only a small minority of cases. This observation supports the concept that viral infection is primarily a trigger for multiple-organ pathogenic proinflammatory responses. Direct viral tissue damage is a transient phenomenon that is generally not sustained throughout disease progression.


Asunto(s)
COVID-19/patología , Hígado/virología , Pulmón/virología , SARS-CoV-2/patogenicidad , Animales , Autopsia/métodos , COVID-19/virología , Chlorocebus aethiops , Progresión de la Enfermedad , Humanos , Inmunohistoquímica/métodos , Hígado/química , Hígado/patología , Pulmón/patología , ARN Viral/metabolismo , Células Vero/virología , Carga Viral/métodos
8.
Nat Biomed Eng ; 5(8): 815-829, 2021 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1213929

RESUMEN

The rapid repurposing of antivirals is particularly pressing during pandemics. However, rapid assays for assessing candidate drugs typically involve in vitro screens and cell lines that do not recapitulate human physiology at the tissue and organ levels. Here we show that a microfluidic bronchial-airway-on-a-chip lined by highly differentiated human bronchial-airway epithelium and pulmonary endothelium can model viral infection, strain-dependent virulence, cytokine production and the recruitment of circulating immune cells. In airway chips infected with influenza A, the co-administration of nafamostat with oseltamivir doubled the treatment-time window for oseltamivir. In chips infected with pseudotyped severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), clinically relevant doses of the antimalarial drug amodiaquine inhibited infection but clinical doses of hydroxychloroquine and other antiviral drugs that inhibit the entry of pseudotyped SARS-CoV-2 in cell lines under static conditions did not. We also show that amodiaquine showed substantial prophylactic and therapeutic activities in hamsters challenged with native SARS-CoV-2. The human airway-on-a-chip may accelerate the identification of therapeutics and prophylactics with repurposing potential.


Asunto(s)
Antivirales/farmacología , Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Prueba de COVID-19/métodos , Dispositivos Laboratorio en un Chip , Animales , COVID-19/diagnóstico , COVID-19/virología , Línea Celular , Cricetinae , Femenino , Proteínas Fluorescentes Verdes , Humanos , Masculino , SARS-CoV-2/efectos de los fármacos , Internalización del Virus/efectos de los fármacos
9.
Mod Pathol ; 34(8): 1456-1467, 2021 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1164812

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its associated clinical syndrome COVID-19 are causing overwhelming morbidity and mortality around the globe and disproportionately affected New York City between March and May 2020. Here, we report on the first 100 COVID-19-positive autopsies performed at the Mount Sinai Hospital in New York City. Autopsies revealed large pulmonary emboli in six cases. Diffuse alveolar damage was present in over 90% of cases. We also report microthrombi in multiple organ systems including the brain, as well as hemophagocytosis. We additionally provide electron microscopic evidence of the presence of the virus in our samples. Laboratory results of our COVID-19 cohort disclose elevated inflammatory markers, abnormal coagulation values, and elevated cytokines IL-6, IL-8, and TNFα. Our autopsy series of COVID-19-positive patients reveals that this disease, often conceptualized as a primarily respiratory viral illness, has widespread effects in the body including hypercoagulability, a hyperinflammatory state, and endothelial dysfunction. Targeting of these multisystemic pathways could lead to new treatment avenues as well as combination therapies against SARS-CoV-2 infection.


Asunto(s)
COVID-19/fisiopatología , Pulmón/fisiopatología , Embolia Pulmonar/fisiopatología , Adulto , Anciano , Anciano de 80 o más Años , Autopsia , Coagulación Sanguínea , COVID-19/sangre , COVID-19/patología , COVID-19/virología , Causas de Muerte , Citocinas/sangre , Femenino , Interacciones Huésped-Patógeno , Humanos , Mediadores de Inflamación/sangre , Pulmón/patología , Pulmón/virología , Masculino , Persona de Mediana Edad , Ciudad de Nueva York , Embolia Pulmonar/sangre , Embolia Pulmonar/patología , Embolia Pulmonar/virología , SARS-CoV-2/patogenicidad
10.
Cell ; 184(10): 2618-2632.e17, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: covidwho-1157174

RESUMEN

The ongoing pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently affecting millions of lives worldwide. Large retrospective studies indicate that an elevated level of inflammatory cytokines and pro-inflammatory factors are associated with both increased disease severity and mortality. Here, using multidimensional epigenetic, transcriptional, in vitro, and in vivo analyses, we report that topoisomerase 1 (TOP1) inhibition suppresses lethal inflammation induced by SARS-CoV-2. Therapeutic treatment with two doses of topotecan (TPT), an FDA-approved TOP1 inhibitor, suppresses infection-induced inflammation in hamsters. TPT treatment as late as 4 days post-infection reduces morbidity and rescues mortality in a transgenic mouse model. These results support the potential of TOP1 inhibition as an effective host-directed therapy against severe SARS-CoV-2 infection. TPT and its derivatives are inexpensive clinical-grade inhibitors available in most countries. Clinical trials are needed to evaluate the efficacy of repurposing TOP1 inhibitors for severe coronavirus disease 2019 (COVID-19) in humans.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , ADN-Topoisomerasas de Tipo I/metabolismo , SARS-CoV-2/metabolismo , Inhibidores de Topoisomerasa I/farmacología , Topotecan/farmacología , Animales , COVID-19/enzimología , COVID-19/patología , Chlorocebus aethiops , Humanos , Inflamación/tratamiento farmacológico , Inflamación/enzimología , Inflamación/patología , Inflamación/virología , Mesocricetus , Ratones , Ratones Transgénicos , Células THP-1 , Células Vero
11.
Vaccines (Basel) ; 8(4)2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: covidwho-979800

RESUMEN

A successful severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine must not only be safe and protective, but must also meet the demand on a global scale at a low cost. Using the current influenza virus vaccine production capacity to manufacture an egg-based inactivated Newcastle disease virus (NDV)/SARS-CoV-2 vaccine would meet that challenge. Here, we report pre-clinical evaluations of an inactivated NDV chimera stably expressing the membrane-anchored form of the spike (NDV-S) as a potent coronavirus disease 2019 (COVID-19) vaccine in mice and hamsters. The inactivated NDV-S vaccine was immunogenic, inducing strong binding and/or neutralizing antibodies in both animal models. More importantly, the inactivated NDV-S vaccine protected animals from SARS-CoV-2 infections. In the presence of an adjuvant, antigen-sparing could be achieved, which would further reduce the cost while maintaining the protective efficacy of the vaccine.

12.
Nature ; 586(7830): 509-515, 2020 10.
Artículo en Inglés | MEDLINE | ID: covidwho-792975

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the aetiological agent of coronavirus disease 2019 (COVID-19), an emerging respiratory infection caused by the introduction of a novel coronavirus into humans late in 2019 (first detected in Hubei province, China). As of 18 September 2020, SARS-CoV-2 has spread to 215 countries, has infected more than 30 million people and has caused more than 950,000 deaths. As humans do not have pre-existing immunity to SARS-CoV-2, there is an urgent need to develop therapeutic agents and vaccines to mitigate the current pandemic and to prevent the re-emergence of COVID-19. In February 2020, the World Health Organization (WHO) assembled an international panel to develop animal models for COVID-19 to accelerate the testing of vaccines and therapeutic agents. Here we summarize the findings to date and provides relevant information for preclinical testing of vaccine candidates and therapeutic agents for COVID-19.


Asunto(s)
Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/prevención & control , Modelos Animales de Enfermedad , Pandemias/prevención & control , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/prevención & control , Animales , Betacoronavirus/efectos de los fármacos , Betacoronavirus/inmunología , COVID-19 , Vacunas contra la COVID-19 , Infecciones por Coronavirus/inmunología , Hurones/virología , Humanos , Mesocricetus/virología , Ratones , Neumonía Viral/inmunología , Primates/virología , SARS-CoV-2 , Vacunas Virales/inmunología
13.
Nature ; 586(7827): 113-119, 2020 10.
Artículo en Inglés | MEDLINE | ID: covidwho-672174

RESUMEN

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019 has triggered an ongoing global pandemic of the severe pneumonia-like disease coronavirus disease 2019 (COVID-19)1. The development of a vaccine is likely to take at least 12-18 months, and the typical timeline for approval of a new antiviral therapeutic agent can exceed 10 years. Thus, repurposing of known drugs could substantially accelerate the deployment of new therapies for COVID-19. Here we profiled a library of drugs encompassing approximately 12,000 clinical-stage or Food and Drug Administration (FDA)-approved small molecules to identify candidate therapeutic drugs for COVID-19. We report the identification of 100 molecules that inhibit viral replication of SARS-CoV-2, including 21 drugs that exhibit dose-response relationships. Of these, thirteen were found to harbour effective concentrations commensurate with probable achievable therapeutic doses in patients, including the PIKfyve kinase inhibitor apilimod2-4 and the cysteine protease inhibitors MDL-28170, Z LVG CHN2, VBY-825 and ONO 5334. Notably, MDL-28170, ONO 5334 and apilimod were found to antagonize viral replication in human pneumocyte-like cells derived from induced pluripotent stem cells, and apilimod also demonstrated antiviral efficacy in a primary human lung explant model. Since most of the molecules identified in this study have already advanced into the clinic, their known pharmacological and human safety profiles will enable accelerated preclinical and clinical evaluation of these drugs for the treatment of COVID-19.


Asunto(s)
Antivirales/análisis , Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Evaluación Preclínica de Medicamentos , Reposicionamiento de Medicamentos , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/virología , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/farmacología , Células Epiteliales Alveolares/citología , Células Epiteliales Alveolares/efectos de los fármacos , Betacoronavirus/crecimiento & desarrollo , COVID-19 , Línea Celular , Inhibidores de Cisteína Proteinasa/análisis , Inhibidores de Cisteína Proteinasa/farmacología , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hidrazonas , Células Madre Pluripotentes Inducidas/citología , Modelos Biológicos , Morfolinas/análisis , Morfolinas/farmacología , Pandemias , Pirimidinas , Reproducibilidad de los Resultados , SARS-CoV-2 , Bibliotecas de Moléculas Pequeñas/análisis , Bibliotecas de Moléculas Pequeñas/farmacología , Triazinas/análisis , Triazinas/farmacología , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
14.
Curr Protoc Microbiol ; 58(1): e108, 2020 09.
Artículo en Inglés | MEDLINE | ID: covidwho-614201

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in the city of Wuhan, Hubei Province, China, in late 2019. Since then, the virus has spread globally and caused a pandemic. Assays that can measure the antiviral activity of antibodies or antiviral compounds are needed for SARS-CoV-2 vaccine and drug development. Here, we describe in detail a microneutralization assay, which can be used to assess in a quantitative manner if antibodies or drugs can block entry and/or replication of SARS-CoV-2 in vitro. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Microneutralization assay to test inhibition of virus by antibodies (purified antibodies or serum/plasma) Basic Protocol 2: Screening of anti-SARS-CoV-2 compounds in vitro Support Protocol: SARS-CoV-2 propagation.


Asunto(s)
Anticuerpos Antivirales/inmunología , Betacoronavirus/inmunología , Evaluación Preclínica de Medicamentos/métodos , Pruebas de Neutralización/métodos , Animales , COVID-19 , Chlorocebus aethiops , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Humanos , Ratones , Pandemias , Neumonía Viral/inmunología , Neumonía Viral/virología , SARS-CoV-2 , Células Vero , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA